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Abstract

In this technical note we describe the setup and application of automated sample preparation and usage of flow-
through NMR equipment for the characterization of ligand binding on proteins. In addition, we focus on the
perspectives of automated analysis of 2D HSQC spectra to identify changes in patterns indicative for ligand binding
or changes of sample conditions. In this context we discuss a combination of statistical and non-statistical data
analysis.

Abbreviations:BEST, Bruker Efficient Sample Transfer; HSQC, heteronuclear single quantum correlation; PC,
principal component; PCA, principal component analysis; 2D, two-dimensional.

Introduction

The idea of using NMR to probe small molecule in-
teractions with proteins has been of practical interest
since the early 1960s (Dwek, 1973; Wüthrich, 1976;
Otting, 1993). Recently, NMR binding studies have
gained new momentum in the search for small ligand
molecules binding to target proteins (Shuker et al.,
1996; Hajduk et al., 1999; Shapiro and Wareing,
1999). This development is fostered by the system-
atization of research that is ongoing in many areas of
drug discovery (see‘Intelligent drug design’, Nature,
384 Suppl, 1996). Most of the early NMR binding
studies focused on systems with rapid exchange of
the ligand molecules between the binding site(s) of
the macromolecule and the bulk of the solution con-
taining free ligand(s). The principal manifestations of
the interactions in the ligand spectrum are chemical
shift changes and line broadening. In these studies, the
macromolecular component may actually be present
in much lower molar concentrations than the ligand
molecule. The protein spectrum is therefore either
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not visible or can be suppressed by a relaxation fil-
ter, allowing an easy evaluation of protein binding
effects in the ligand spectrum. This class of simple
one-dimensional1H NMR experiments was soon com-
plemented by investigations of the nuclear Overhauser
enhancement resulting from the interactions with the
protein (Balaram et al., 1972; Clore and Gronenborn,
1982; Meyer et al., 1997). Recently, the repertoire
of homonuclear 1D techniques for the direct mea-
surement of molecular interactions has further been
expanded by diffusion edited and NOE-pumping tech-
niques (Hajduk et al., 1997; Lin et al., 1997; Chen and
Shapiro, 1998).

In many cases, the conditions to study intermolec-
ular interactions with proteins can greatly be improved
by selective isotope labeling of individual components
(Wüthrich, 1976). An embodiment of this early idea is
represented in a second class of experiments, which
relies on13C and/or15N labeled protein. Here the
ligand–protein interaction is reflected on resonances
of the heteronuclear edited protein spectrum. It has
been shown that chemical shift perturbation of1H,
13C and/or15N resonances is one of the most sensitive
methods to monitor specific protein–ligand complex
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formation over a broad affinity range (mM< Kd <

nM) (Kallen et al., 1991; Wang et al., 1992; Yu et al.,
1992; Chen et al., 1993; Rizo et al, 1994; Feher et al.,
1996). In addition, the binding site of the ligand can
be localized on the protein surface if the resonances
of the protein are assigned. These studies can be com-
plemented by the detection of intermolecular NOEs,
which allow a detailed structural analysis of the ligand
interaction in the binding cavity of the protein (Otting
et al., 1991; Liepinsh and Otting, 1994, 1997; Dötsch
et al., 1995).

The mapping of ligand binding surfaces – other
than those where substrate and effector molecules
bind – has previously been described for crystalline
proteins (Fitzpatrick et al., 1993; Mattos and Ringe,
1996). On the basis of such experiments a novel
experimental approach to drug design was proposed
(Fitzpatrick et al., 1993; Allen et al., 1996). Thereby,
the localized binding of different ligand molecules on
the protein surface is used to guide the development
of a specific lead compound by combining the various
functional groups of the ligand molecules. A similar
but more systematic approach has recently also been
described by Shuker et al. (1996).

The performance of the NMR experiment is a cru-
cial practical issue if the method has to be applied
for screening ligand binding with a larger chemical
library. Two conditions have to be fulfilled for the
NMR experiment to be efficiently applicable for lig-
and screening: (i) the measurement time for NMR data
acquisition must be short (Ross et al., 1997); and (ii)
all the steps from sample preparation to data acquisi-
tion and evaluation must be automated. In this note we
embark on condition (ii) and describe the automation
of all the necessary steps, which involve ‘just-in-time’
sample preparation, transfer of the freshly prepared
sample to the magnet, acquisition of the NMR data,
back-transfer of the sample, and finally, the analysis
of the data. In the selected example, changes in the
1H-15N correlated HSQC spectra (Bax et al., 1990) of
the protein after addition of single compounds from a
larger library are collectively analyzed to identify spe-
cific ligand binding to one or more sites on the target
protein.

Our hardware setup, consisting of a Gilson 215
liquid handler (Middleton, WI, U.S.A.) running under
XTRAY software (Abimed, Langenfeld, Germany) in-
terfaced to the NMR spectrometer via a capillary to
a flow-through probe head (Bruker BEST-system), is
schematically shown in Figure 1. A similar setup has
recently been described in the context of body fluid

NMR with urine samples (Spraul et al., 1997). The
automated data analysis of the1H-15N correlated pro-
tein HSQC spectra was done in two steps: First a
non-statistical data analysis using the AMIX software
(version 2.1.3, Bruker) was used to identify ligands
causing spectral changes in the protein spectrum. Sec-
ond, this information was used in a statistical (Überla,
1968; Henrion and Henrion, 1995) approach to dis-
tinguish ligands binding specifically to a binding site
from those that show non-specific interaction with the
protein or change sample conditions (pH).

Experimental

Compounds
The compounds of the library in use were selected
from the ACD database using a molecular weight
cutoff filter of 150 amu to monitor a high variety
of structural motifs. All ligands were dissolved in
DMSO-d6 at a concentration of 200 mM and stored in
amounts of 1 ml in 2 ml 96 deep well plates (referred
to as mother-plate). For this purpose the Gilson system
was equipped with two standard racks for two well
plates each. To prevent aggregation of the ligands in
the protein sample, the whole library consisting of 500
ligands was tested for solubility using optical methods
(Kansy et al., 1998) at the pH of interest. Based on
these results 300 compounds were pre-selected for the
NMR based screening. As target protein we used15N
labeled peptide deformylase (Adams, 1968). The pro-
tein stock solution with a concentration of 250µM
was stored in a 100 ml bottle fitting in a standard
Gilson bottle-rack. The pH of the sample was buffered
to 7.5 using 50 mM of sodium phosphate. To pre-
vent aggregation of protein the same buffer was used
as system and rinsing liquid for the liquid handling
system.

Each compound was defined by its position in the
well plates and an identification number. For book-
keeping reasons the data sets taken (see below) were
identified by this number.

Sample preparation
The automated sample preparation was integrated as
an ICONNMR triggered sub-routine in the Bruker
BEST-NMR software. A list of identifiers and well po-
sitions for samples of interest was sent automatically
via RS232 interface from the NMR spectrometer to
the robot at the start of the whole protocol. By this
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Figure 1. Schematic drawing of the hardware setup: (1) system liquid (protein buffer solution); (2) 5 ml sample dilutor syringe; (3) three-way
valve; (4) sample loop; (5) six-way valve for sample loading; (6) six-way valve for sample injection; (7) injection port; (8) 1.5 mm needle;
(9) 1 ml deep well plate for sample mixing and deposition (daughter plate); (10) 2 ml 96 deep well plate loaded with 200 mM stock solutions
of ligands in DMSO-d6 (mother plate); (11) W: rinsing liquid (protein buffer solution), S: 0.25 mM protein stock solution; (12) external
waste reservoir; (13)15N self shielded z-gradient NMR flow-through probe with external lock cell; (14) electro-mechanically switched 1.5 bar
nitrogen gas to support sample retraction. The insert shows the composition of each sample sandwich: (a) pushing liquid (buffer) – volume
optimized for transfer to NMR detection cell; (b) 50µl heading air gap; (c) 360µl sample; (d) 50µl trailing air gap; (e) 800µl cleaning liquid
(buffer).

procedure the samples were selectively picked, inde-
pendent of their position on the plate. The sample
preparation with the Gilson robot started immediately
before each NMR measurement to provide freshly
mixed samples. The following steps were thereby in-
volved: (a) cleaning of the needle with 1500µl of
rinsing liquid; (b) aspiration of 380µl of protein stock
solution; (c) deposition of this sample in a second
1 ml deep well plate (referred to as daughter-plate)
– for simple identification of the sample the protein
was put in the same well-position as that of the ligand
to be added on the second plate; (d) needle-rinsing
step as above; (e) aspiration of 20µl ligand from
the mother-plate; (f) deposition of the ligand aliquot
in the corresponding well of the daughter-plate; (g)
mixing step: 200µl of sample in the well was aspired
and blown out of the needle two times with the high-
est flow rate possible (ca. 20 ml/min) – in each well
prepared the protein and ligand concentrations were
10 mM and 250µM respectively, resulting in a ligand
to protein concentration ratio of 40:1; (h) transfer step:
the freshly mixed sample was taken out of the well to
the lowest rest volume possible and injected automat-
ically into the transfer line. The sample was separated
from the pushing and heading liquid by an air bubble
to prevent dilution. The composition of the resulting
‘sandwiched sample’ to be transferred via a 500µm
capillary to the spectrometer is shown in the insert

of Figure 1. The whole sandwich was pumped to the
spectrometer cell with a pump rate of 1 ml/min. The
transfer time necessary for pumping the sample from
the sample well to the NMR probe was determined be-
fore the experiment as follows: the inlet capillaries of
a 600 MHz flow-through probe have an approximate
dimension of 550× 0.5 mm. To estimate the correct
value for sample transfer the transfer capillary was
connected with a junction to a capillary of the same
i.d. When the trailing air bubble after the sample was
pushed about 500 mm after the junction the sample
would thus be positioned correctly in the NMR probe.

After stopping the pump, the NMR data were
recorded as described below. The sample-sandwich
was then back-transferred to the valve by retraction of
the adjusted amount of system liquid supported by a
nitrogen pressure of 1.5 bar. This gas-flow was electro-
mechanically switched to the outlet of the probe head.
Finally, the sample was recovered by the robot to the
corresponding well of the deep-well daughter-plate.
Now the next sampling cycle was started.

NMR
All spectra were taken on a Bruker DMX 600 MHz
spectrometer equipped with a self-shielded z-gradient
1H,15N flow-through probe with a detection volume of
250µl. This probe was equipped with an internal cell
for the lock solvent. As lock solvent we used D2O.
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All data were taken at 300 K. The spectrometer was
operating under Bruker XWINNMR version 2.1 mas-
tered by the BEST module of the ICONNMR version
2.0. All spectra were taken by use of the digital fil-
tering and quadrature detection mode as implemented
on the spectrometer. Pulses were determined as fol-
lows: 8µs proton 90◦ pulse, 50µs 15N pulse, 200µs
15N pulse for GARP decoupling (Shaka et al., 1985).
The sweep width in the proton dimension was set to
16 ppm; that in the15N indirect dimension was set
to 32.1 ppm. The proton carrier was positioned on
the water resonance referenced to 4.7 ppm. The ni-
trogen carrier was set using the internal spectrometer
referencing to 118.0 ppm. The ICONNMR module
allows, prior to starting the run, to set up a list of
wells selected out of two 96 mother-plates each to be
handled according to the procedure given above. The
NMR protocol consists of: (a) automated locking on
D2O; (b) 1D 2-step z-axis gradient shimming (van Zijl
et al., 1994); (c) 1 scan 1D NMR spectrum followed
by automated peak picking to determine the water fre-
quency; (d) 1D presaturation spectrum taken with 32
scans at a repetition rate of 1 s acquiring 16K com-
plex data points. Missing resonances in these spectra
can easily be used to identify insoluble or aggregat-
ing ligands. In this step the inclusion of 1D NMR
techniques designed to identify ligand binding (Haj-
duk et al., 1997; Lin et al., 1997; Meyer et al., 1997;
Chen and Shapiro, 1998) is straightforward. (e) 2D
1H-15N correlated HSQC spectrum using the flip-back
technique (Grzesiek and Bax, 1993) together with
WATERGATE (Sklenar et al., 1993) solvent suppres-
sion. For each time increment 32 scans were added up,
allowing for a relaxation of 1 s. Sixty-four complex
data points were taken along t1 using the States-TPPI
phase-incrementation scheme (Bax et al., 1990). The
total acquisition time for each of these 2D data sets
was about 1 h. Together with the necessary sample
preparation/transportation and all other spectrometer
action the repetition rate for each sample was about
70 min.

Prior to Fourier transformation a polynomial base-
line correction was applied on the FIDs to reduce the
residual water signal (Marion et al., 1989). All 2D
correlation spectra were processed using linear pre-
diction (Led and Gesmar, 1991), doubling the number
of time domain data points along t1. Finally the data
were zero-filled to a final matrix of 512× 2K points.
In both dimensions we appliedπ/3 shifted squared
cosine windows. A polynomial baseline correction of
order 5 was applied along f2. The processing of all

spectra was performed without user interaction in a
fully automated setup.

Data analysis
In a first step all spectra were compared to a spec-
trum of a reference sample prepared by addition of a
DMSO-d6 volume equivalent to that in the ligand sam-
ples. This was done fully automated using the spectral
comparison tool of the Bruker AMIX software pack-
age. In this package the similarity between two spectra
is calculated as the normalized scalar product between
the results of 2D bucketing calculations (using buck-
ets of decreasing size) performed on the reference
and the test spectrum. The calculation of all correla-
tion values is performed without user interaction. The
program provides a table ranked according to the cal-
culated correlation coefficients. For further analysis of
this result for different underlying patterns of spectral
changes, in a second step we performed a statistical
analysis (Edlund and Grahn, 1991; Gartland et al.,
1991) of all spectra. Using the software AMIX, an
automated and not normalized peak picking was per-
formed on the reference spectrum. The result of this
procedure was used to define an integration pattern
with N integration regions applied to all 300 ligand
spectra. The resulting data matrix of size N× 300
was now further analyzed using the software package
UNSCRAMBLER version 6.0. In this program, like in
most commercially available statistical software pack-
ages, an algorithm for principal component analysis
(Henrion et al., 1988) is implemented. This method
relies on the determination of those axes in a space of
dimensionality N (number of integral regions) where
the variances of the data (integral values) are maxi-
mized. Each data set (integral values for one sample)
is projected on these axes. The projected values are
named principal components (PC) of the correspond-
ing sample (ligand spectrum). Outliers compared to
the ‘most probable spectrum’ manifest themselves by
large PCs along one or more axes. By visual inspection
of 2D plots of PCi versus PCj one can find combina-
tions showing a clear separation of spectra from the
‘average’ as determined in the first step of the proce-
dure. The observation of clustering data points in these
representations helps to identify different underlying
shift patterns. For the 6 PCs which explain 98% of the
total variance of the data calculated here, we used the
‘center’ mode of the algorithm. Due to the large size
of the data matrix the application of cross validation
testing did not significantly influence the result.
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Results and discussion

Experimental
Using the hardware setup described above we mea-
sured one reference and 306 single compound sam-
ples. We decided for this approach rather than for
mixtures, as the interaction of compounds in mixtures
has to be studied thoroughly. Otherwise false posi-
tive/negative results with respect to protein binding
might be obtained. Retrospective analysis of our re-
sults showed that about 10% of all tested substances
showed an effect on the spectra. For this incidence rate
the optimal number of compounds in mixtures would
be around 3. We prefer the additional experimental
time rather than the time necessary to characterize the
physico-chemical properties of all mixtures in use. In
addition, we circumvent the task to deconvolute mix-
tures. A further advantage of not using mixtures is
the straightforward use of the 1D proton spectra to se-
lect insoluble compounds. We want to emphasize that
the hardware setup described here and all of the data
analysis shown below is readily applicable to mixtures
of substances, without modification.

Due to the failure of the automated lock proce-
dure we were finally left with 306 1D proton and the
same number of 2D1H-15N correlated spectra. As ex-
pected, the inspection of the 1D spectra showed that
all compounds were soluble at our sample conditions.
After the analysis of the 2D data (see below) it became
clear that our buffer concentration (50 mM of sodium
phosphate) was too low to exclude pH changes of the
sample due to basic or acidic groups of substances in
our library. To prevent this we recommend to use a
buffer concentration above 100 mM for future appli-
cations. In addition it would be helpful to characterize
the compounds of the library in terms of the pKa’s
of all titrateable groups. As the manual check of the
pH values of hundreds of NMR samples is a very
time-consuming task, the addition of a pH sensitive
reference substance (e.g. imidazole) would be help-
ful. The acquired 1D data would serve as NMR based
pH detection. An automated measurement of pH in a
flow-through detection cell included in the capillary
line of our setup would be ideal. To our knowledge,
such a system is currently not commercially available.
Helpful in the interpretation of the result of the data
analysis described below is the inclusion of 2D spec-
tra taken at slightly modified pH (if possible for the
protein given) in the data matrix.

As an additional result of the data analysis we
found 5 spectra showing typical incidence for pro-

tein aggregation. Fortunately, the aggregation in these
samples did not lead to a clot occluding the capillary
line. Visual inspection of the recovered samples only
showed some ‘milkyness’ of the solvent. To prevent
aspiration of seriously aggregated samples to the cap-
illary system, an automated check in the well plates
would be needed. Again, to our knowledge, no device
to be easily included in the setup described here is
currently commercially available.

Data analysis
The result of the first step of the data analysis using
AMIX (see Experimental section) is shown in Fig-
ure 2. The difficulty to define a clear cutoff to separate
interacting from non-interacting compounds is evi-
dent. Visual inspection of the five data sets described
by the lowest correlation showed incidence for protein
aggregation. These sets were excluded from further
analysis. Following the recipe described above, we
easily identified the combination of PC2 versus PC4 as
the one which showed the best separation. The result
of the PCA is given in Figure 3. It is clear that there
are two underlying classes of spectral changes in the
data: Class ‘A’ shows large and small deviations along
PC2 and PC4, respectively. In Class ‘B’ the behavior is
reversed. To further characterize the spectral changes
associated with both classes we superimposed the two
most outlying spectra on the reference. The result is
shown in Figure 4. The subsets of peaks shifting for
ligands of class ‘A’ is clearly disjunct from those dis-
appearing for class ‘B’. For completeness it should be
stated that neither PC1 nor PC3 showed any clustering
which could help to identify distinct spectral changes
(data not shown). The origin of the variance associ-
ated with these PCs remains unclear. Nevertheless, it
is clearly evident that PCA is well suited to separate
different binding sites occupied by different structural
motifs found in the library. As will be shown, PCA
analysis can further help to distinguish real binding
effects from experimental artifacts and changes in the
sample conditions (pH, aggregation).

To get insight in the physico-chemical origin caus-
ing the change of spectral patterns of both classes,
the corresponding ligand structures were checked and
compared. As most of class ‘B’ compounds contain
an aliphatic amine moiety as functional group, it was
suspected that the spectral changes were caused by a
small change of sample pH due to the basic properties
of these compounds. This was proven by taking two
1H-15N correlated spectra of protein samples with pH
values varied by±0.5 units. Inclusion of these spectra
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Figure 2. The result of the non-statistical analysis (AMIX). Solid line: sorted correlation coefficient for each sample compared to the reference
spectrum. The samples with the lowest coefficients correspond to aggregated protein. For comparison, the values for PC2 and PC4 are included
as circles and triangles, respectively. Samples regarded as outliers from the main bulk of the PC, as shown in Figure 3, are shown as filled
symbols. The lines with the short and long dashes correspond to the cutoff for PC2 (−2.0e−4) and PC4 (+1.0e4), respectively. Samples
showing a low AMIX correlation that do not contain the common structural motif of binding substances are labeled with ‘#’. Samples that show
a high AMIX correlation containing the binding structural motif are labeled with asterisks.

Figure 3. PCA statistical data analysis (UNSCRAMBLER): Shown is the plot of PC2 versus PC4. This was selected based on the subset of
spectra showing ‘lower’ correlation in the non-statistical step. Class ‘A’ ligands are shown to bind in the intended binding pocket, class ‘B’
ligands inducing a slight pH shift of the sample. With ‘A’ respectively ‘B’ we marked data sets whose spectra are shown in Figure 4. The
meaning of the dashed lines is the same as given in the legend of Figure 3.
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Figure 4. Expansion of1H-15N correlated spectra. In gray is shown the reference spectrum taken with addition of only DMSO-d6. In black in
(A) binding ligand – arrows indicate shifting signals; in (B) acidic ligand – circles indicate disappearing signals.

in the PC analysis clearly showed the data with the
increased pH as members of class ‘B’. The data sets
with lowered pH did not show up as outliers in the
PCA. By doing so the spectral changes due to slight
pH changes were included in the data matrix.

The pH-modified samples also clearly indicated
that the spectral changes associated with class ‘A’ are
not pH induced but are caused by direct ligand–protein
interaction. Inspection of the ligand structures associ-
ated with class ‘A’ allowed identification of a common
structural motif responsible for the specific interac-
tion with the protein. Inspection of Figure 2 shows
that the data points labeled with asterisks would not
have been found by performing only a one-step AMIX
data analysis. The same holds true for the pH induced
outliers labeled with ‘#’ in Figure 2. Therefore the
identification of the common structural motif of class
‘A’ (which is also found for the substances behind the
‘∗’-labeled data points of Figure 2) would have been
aggravated. This shows that the similarity-measure as
determined using AMIX is of more ‘integral’ charac-
ter compared to the information contained in a PCA
analysis. It has to be stressed that the AMIX step of
the data analysis is nevertheless very helpful in deter-
mining the pair of principal components that contains
the information of interest.

It has to be emphasized that for the whole analy-
sis the assignment of the protein signals was not
necessary. As in our case the assignment of the target-
protein spectrum was available, we could show that
protein resonances influenced by class ‘B’ members
were mostly Glu or Asp residues. In contrast, class
‘A’ ligands change the resonances of amino acids in
spatial proximity to the active site of the protein.

Finally we determined the binding constants of
selected class ‘A’ ligands in order to achieve a rank-
ing with respect to their affinity to the protein and to
provide structural starting points (needles) to medical
chemists for further chemical optimization. This was
done using ligand titrations in NMR and analytical
ultra centrifugation (Eason, 1989).

Conclusions

In summary, we have presented a roboterized sample
preparation and handling setup which is, together with
the fully automated data acquisition and analysis tool,
suited for any application necessitating the prepara-
tion of fresh protein compound mixtures, followed by
acquisition and evaluation of data to characterize a
large number of ligand–protein interactions. Further
improvement regarding the sensitivity of probeheads
will provide the basis to require less protein or reduce
the data acquisition time (Hajduk et al., 1999). The
scheme outlined above is easily adapted to any NMR
measuring technique. Limiting for this setup is that
protein aggregation in the samples has to be safely
excluded, as otherwise irreversible occlusion of the
flow-through probe might occur. To improve on this
problem we currently have a roboterized system under
construction being able to perform all above defined
tasks by filling freshly prepared samples in individ-
ual disposeable NMR sample tubes and transferring
those automatically from the lab bench to the mag-
net. We believe that both setups will be regarded as
complementary in the future. The flow-through ap-
proach described here has the advantage of speed,
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convenience and elegance, whereas the scope of ap-
plicability is broader for the single-tube setup under
development. This is given by two considerations:
(i) In our application the protein was extremely well
behaved – for other systems under investigation this
might not be the case. For such target proteins irre-
versible occlusion of the system might occur. (ii) The
necessity to perform a solubility pre-screening nar-
rows the range of structural motifs that can be studied
safely. The pre-screening excludes all substances not
soluble in water, but ‘soluble in the protein’. These
substances would be interesting ligands per se.

The data analysis described is equally applicable
for all hardware setups.
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